Bis-biguanide dihydrochloride inhibits intracellular replication of M. tuberculosis and controls infection in mice
نویسندگان
چکیده
While there is an urgent need to develop new and effective drugs for treatment of tuberculosis (TB) and multi-drug resistant TB (MDR-TB), repurposing FDA (U.S. Food and Drug Administration) -approved drugs for development of anti-TB agents may decrease time and effort from bench to bedside. Here, we employed host cell-based high throughput screening (HTS) assay to screen and characterize FDA-approved, off-patent library drugs for anti-Mycobacterium tuberculosis (MTB) activities. The cell-based HTS allowed us to identify an anti-cancer drug of bis-biguanide dihydrochloride (BBD) as potent anti-mycobacteria agent. Further characterization showed that BBD could inhibit intracellular and extracellular growth of M. smegmatis and slow-growing M. bovis BCG. BBD also potently inhibited replication of clinically-isolated MTB and MDR-TB strains. The proof-of-concept study showed that BBD treatment of MTB-infected mice could significantly decrease CFU counts in the lung and spleen. Notably, comparative evaluation showed that MTB CFU counts in BBD-treated mice were lower than those in rifampicin-treated mice. No apparent BBD side effects were found in BBD-treated mice. Thus, our findings support further studies to develop BBD as a new and effective drug against TB and MDR-TB.
منابع مشابه
Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملImmunogenicity of heparin-binding hemagglutinin expressed by Pichia pastoris GS115 strain
Objective(s): Heparin-binding hemagglutinin (HBHA), a mycobacterial cell surface protein, mediates adhesion to nonphagocytic cells and the dissemination of Mycobacterium tuberculosis (M. tuberculosis) from the site of primary infection. Superior expression systems are required to obtain abundant M. tuberculosis proteins for the purpose of diagnosing M. tuberculosis infection or for the immuniza...
متن کاملGallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes.
Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga(3+) from Fe(3+). Unlike Fe(3+), Ga(3+) cannot be physiologically reduced to Ga(2+). Thus, substituting Ga for Fe in the ac...
متن کاملComplete ablation of tumor necrosis factor decreases the production of IgA, IgG, and IgM in experimental central nervous system tuberculosis
Objective(s): This study aimed to explore the contribution of tumor necrosis factor (TNF) in the recruitment of B-cell and secretion of immunoglobulins (Igs) during cerebral tuberculosis (TB).Materials and Methods: In this work, the contributing role of TNF in regulating Ig secretions was investigated by comparing wild type TNF (TNFf/f),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016